Math 270 Day 6 Part 1

Section 2.5: Special Integrating Factors

What we'll go over in this section

- What is a (general/special) integrating factor?
- Discussion/Formulas
- Solving a DE in differential form that is not exact using a special integrating factor

First, a problem from section 2.4

Example 4 Show that

(16)
$$(x + 3x^3 \sin y) dx + (x^4 \cos y) dy = 0$$

is *not* exact but that multiplying this equation by the factor x^{-1} yields an exact equation. Use this fact to solve (16).

What is a (General/Special) Integrating Factor?

Integrating Factor

Definition 3. If the equation

$$(1) M(x,y) dx + N(x,y) dy = 0$$

is not exact, but the equation

(2)
$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$
,

which results from multiplying equation (1) by the function $\mu(x, y)$, is exact, then $\mu(x, y)$ is called an **integrating factor**[†] of the equation (1).

What is a (General/Special) Integrating Factor?

Example 1 Show that $\mu(x, y) = xy^2$ is an integrating factor for $(2y - 6x) dx + (3x - 4x^2y^{-1}) dy = 0$. Use this integrating factor to solve the equation.

Discussion/Formulas...How do we find the integrating factor $\mu(x,y)$?

Discussion/Formulas...How do we find the integrating factor $\mu(x, y)$?

(1)
$$M(x, y) dx + N(x, y) dy = 0$$

Special Integrating Factors

Theorem 3. If $(\partial M/\partial y - \partial N/\partial x)/N$ is continuous and depends only on x, then

(8)
$$\mu(x) = \exp\left[\int \left(\frac{\partial M/\partial y - \partial N/\partial x}{N}\right) dx\right]$$

is an integrating factor for equation (1).

If $(\partial N/\partial x - \partial M/\partial y)/M$ is continuous and depends only on y, then

(9)
$$\mu(y) = \exp\left[\int \left(\frac{\partial N/\partial x - \partial M/\partial y}{M}\right) dy\right]$$

is an integrating factor for equation (1).

Method for Finding Special Integrating Factors

If M dx + N dy = 0 is neither separable nor linear, compute $\partial M/\partial y$ and $\partial N/\partial x$. If $\partial M/\partial y = \partial N/\partial x$, then the equation is exact. If it is not exact, consider

(10)
$$\frac{\partial M/\partial y - \partial N/\partial x}{N}.$$

If (10) is a function of just x, then an integrating factor is given by formula (8). If not, consider

$$\frac{\partial N/\partial x - \partial M/\partial y}{M}$$

If (11) is a function of just y, then an integrating factor is given by formula (9).

Solving a DE in differential form that is not exact using a special integrating factor

Example 2 Solve $(2x^2 + y) dx + (x^2y - x) dy = 0$.